

FELSZÍNI SZENNYEZÉS REMEDIÁCIÓ PONTOSSÁGÁNAK JAVÍTÁSA TOWARD PRECISE SURFACE POLLUTION REMEDIATION

Grégory Lucas^{1,2}

¹ Karoly Robert College, Research institute of Remote Sensing and Rural Development, Gyöngyös, Hungary

² National University of Public Service, Budapest, Hungary

Fény-Tér-Kép 2015, Gyöngyös

October 30, 2015

Introduction: context and concepts

Part 1 – geo-processing tools development for automatic planning (parcels and navigation lines)

Conclusions 1

Part 2 - Clean-up work: practices, navigation and grading control systems

Conclusions 2

Intro: context and concepts

Context and concepts

Red mud disaster (October 4, 2010) used as case study

Context and concepts

Disaster response:

- Aerial surveys (HS, LiDAR, etc.)
- Pollution mapping (accuracy = 0,5m)

Disaster clean-up:

- Without digital exploitation of GI !
 - Because of the lack of geoprocessing tools & methods

Context and concepts

Integrated approach \longrightarrow GI continuum (full exploitation, integrity, accuracy)

Precise remediation → More accurate removal of pollution, optimization of overlay between passages, less repass = better efficiency + faster + less costs

Part 1: geo-processing tools development for automatic planning

Clean-up plan algorithm development

3 input parameters:

- width
- max. lenght
- orientation

Inherited geometric properties

Object of Interest: clean-up parcel

Clean-up plan

Clean-up plan algorithm development

Clean-up plan algorithm development

Modification of parcel desing algorithm, tests and results

0	- + d	10.516129	_ # ×	- 0 X
File Edit View Bookmarks Insurt Selection Geoprocessing Customics Windows Help 그 글 걸 걸 수 있는 것 같은 것 수 1800 이 가 있는 것 같은 것 같	$\left(\operatorname{Edlaget} (x,y_{k}), x,y_{k} \in \mathbb{R} \right) \geq 0 \geq 0 \geq 0$	- 不可以後,你皇		
	C			Table Image: Second strength Image: Second strength Image: Strength
		Python >>>		F1 show help for ourrent a oursor location. F2 obeck the syntax of the ourrent line (or oode block if in multiple line mode). ESC cancels the ourcent operation. Entf or Control Return will enter multiple line mode. To exit multiple line mode (execute the oode to block) enter Return on the last line. Access the history of commands using the up and down errows on the last line. Right disck in the
Capture Video - X Start Recording (Cut + R)		<u>4</u>		command parte for
Recording Limit: 5 mins. Need More Video Recording Time?		н		V.10001 172 100302 24 Marten
				• IT 1 1100

Modification of parcel desing algorithm, tests and results

Navigation line algorithm results

Automatic navigation data generation is done. Two steps: clean-up plan & navigation lines.

Orientation is a parameter to consider to optimize the planning.

Manual preparation of dataset is necessary

4 km² = 3h40 hours processing (only considering planning) with 55 000+ parcels

Part 2: Field practices, navigation and grading control

Part 1 – mouvements & progressions & coordination

Avoiding cross-contamination Rule: machine moves only on clean surfaces

Field practices - coordination

Field practices – overlay between passages

Field practices – grading control system + navigation system

Field practices – detail of sonic sensors use

Field practices – grading control proposal

Field practices – grading control (vertical)

Fine terrain	Coarse terrain	Chaotic terrain	
Parcel planning	Parcel planning	 1/ Excavation (assisted???) 2/ Parcel planning 	
2D grading system with sonic sensor	3D grading system with double GPS	1/ 3D grading system with 1 GPS antenna, and one bucket sensors	
Parcels, navigation lines	Parcels, navigation lines, TIN terrain model	+ TIN terrain model	

Field practices – grading control (vertical)

Navigation guidance:

- Just the necessary overlay in achieved
- Work is achieved faster with guidance
- Achieve more precise work (horizontal) with guidance
- Tracability with the possibility to record the trajectory and fieldwork footprint

Grading control:

- Achieve more precise control on the thickness
 - Less soil to be removed, transported and treated (or stored)
 - Less contamination left in the field (= less repass)

Pollution clean-up efficient + timely better = reduced costs.

Foreseen/possible fields of application:

- Clean-up of surface contamination around leaking pipelines
- Automatise clean-up in case of major nuclear disaster
- Support in the harvest of polymetallic nodules in the seabed (algorithm)
- More generally, assistance with the optimization of the spatial planning of spatial any process done in (algorithm)

Köszönöm a figyelmeteket

Grégory Lucas

Research Institude of Remote Sensing and Rural Development Karoly Robert College, Gyöngyös, Hungary gregory.luc4s@gmail.com